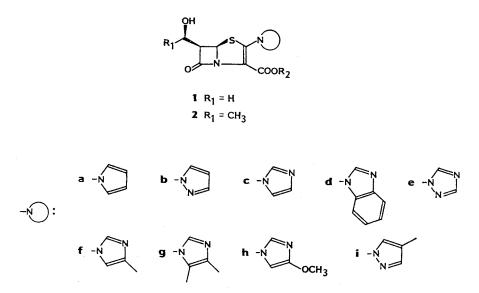
Notes

PENEMS: SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF 2-(1-AZOLYL) DERIVATIVES

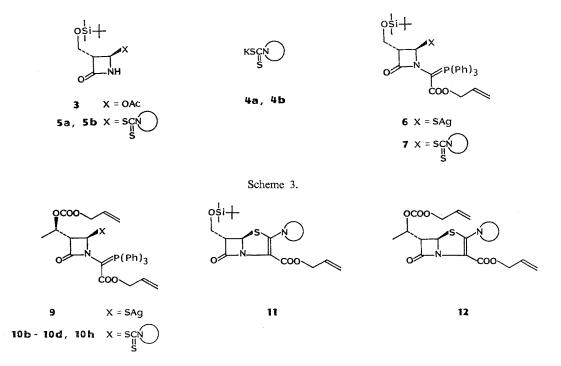
Marc Lang, Peter Schneider, Riccardo Scartazzini, Werner Tosch, Edward A. Konopk and Oto Zak


Pharmaceuticals Division, Research Department, Ciba-Geigy Ltd., CH-4002 Basel, Switzerland

(Received for publication August 22, 1986)

Since the disclosure of the first penem synthesis by WOODWARD¹⁾, many research groups have prepared variously substituted penems, including derivatives bearing hetero-substituents at C-2. Whereas the vast majority of these have been sulfur derivatives^{2~6)}, analogous to the naturally occurring thienamycin and a few 2oxy-substituted penems have been synthesized⁷⁷⁾, no nitrogen derivatives have yet[†] been described. In continuation of our studies in the 2-(heterocyclyl)alkyl series^{8, 9)}, we decided to concentrate on penems 1 and 2, featuring an azole heterocycle directly linked to the penem nucleus through a ring nitrogen (Scheme 1).

In contrast to their unreactive dialkylamino homologues^{††}, the azolyl-dithiocarbamates 7 proved to be good substrates for the Wittig ring closure. Depending on the nature of the heterocycle, these key compounds 7 were arrived at by different pathways (Scheme 2). The 4acetoxyazetidinone 310) was reacted with potassium 1-pyrrolyldithiocarbamate 4a¹¹⁾ (1.5 equiv, ethanol, 1 hour, room temp) to afford a 4:1 mixture of the trans-(3S,4R)-dithiocarbamate 5a (70% yield): IR (CH₂Cl₂) 3410, 1780 cm⁻¹; NMR (CDCl₃) δ 0.11 (6H, s, 2CH₃), 0.93 (9H, s, 3CH₃), 3.48 (1H, m, CH), 4.05 (2H, ABX, CH₂), 5.57 (1H, d, CH), 6.37 (2H, m, 2CH), 6.67 (1H, br s, NH), 7.64 (2H, m, 2CH) and its cis homologue (19% yield), which was separated by chromatography $(SiO_2, toluene - EtOAc,$ 95:5). With potassium 1-pyrazoledithiocarbamate $4b^{12}$ only the trans substituted (3S, 4R)azetidinone 5b could be isolated (76% yield) from the reaction mixture. The classical three-


Scheme 1.

[†] A similar work was reported¹⁹⁾ during the publication procedure for this article. For the patent literature *cf.* refs 20 and 21.

^{††} HOLICK, W. & C. D. WEIS: Unpublished results.

step sequence of the phosphorane synthesis^{13~15)} led to the precursors **7a**, **7b** for the Wittig cyclization reaction. This sequence was unsuitable for the imidazolyl homologue **7c**.

An alternative pathway was based on the acylation of the key silver thiolate 6^{16} with thiocarbonyldiimidazole (2 equiv, CH_2Cl_2 , 2.5 hours, 0°C) to give phosphorane 7c (65% yield): $IR(CH_2Cl_2)$ 1750, 1615 cm⁻¹. Derivatives 7b, 7d~7f were obtained analogously through the reaction of 6 with thiocarbonyl-dipyrazole¹⁷, -dibenzimidazole¹⁷ and di-(4-methyl)imidazole¹. Phosphorane 7c proved to be a suitable substrate for azole exchange reactions, as shown by the conversion 7c \rightarrow 7b, 7e \sim 7i. It reacted, for instance, with 4-methylpyrazole (3 equiv, DMF, 18 hours, room temp) to give phosphorane 7i (87% yield).

The 3-(1'-*R*-hydroxyethyl)phosphoranes 10b, 10d, 10h were synthesized through a similar reaction from phosphorane 10c, which was obtained from silver thiolate 9^{18} and thiocarbonyldiimidazole (Scheme 3).

The penems $11a \sim 11i$ and $12b \sim 12d$, 12h are formed in the Wittig reaction of their corre-

sponding phosphoranes 7 and 10. [For example $10c \rightarrow 12c$ (toluene, 18 hours, reflux; 77% yield): IR (CH₂Cl₂) 1795, 1742, 1715, 1590 cm⁻¹; NMR (CDCl₃) δ 1.52 (3H, d, CH₃), 4.02 (1H, m, CH), 4.62~4.75 (4H, m, 2CH₂), 5.1~5.4 (5H, m, 2CH₂+CH), 5.71 (1H, d, CH), 5.82~6 (2H, m, 2CH), 7.14 (1H, s, CH), 7.23 (1H, s, CH), 7.85 (1H, s, CH)].

Finally, all penems were deprotected to the title compounds (Table 1) by standard deblocking procedures^{8,9}). For penems **11**, the cleavage of the *tert*-butyldimethylsilylether with tetrabutylammonium fluoride and acetic acid was followed by a deblocking of the carboxyl group and, if present of the amino group through a Pd°-catalyzed transallylation reaction. [For example **11c** \rightarrow **1c** (1.2 equiv (*n*-Bu)₃SnH, THF, 0.5 hour, -10° C; 55% yield): UV λ_{max}^{HO} nm 310, NMR (D₂O) δ 4.0 (2H, m, CH₂), 4.2 (1H, m, CH), 5.78 (1H, d, CH), 7.08 (1H, d, CH), 7.33 (1H, d, CH), 7.93 (1H, s, CH)].

The *in vitro* antimicrobial activity of the new penems 1 and 2 against a selection of representative Gram-positive and Gram-negative bacteria is listed in Table 1. In direct comparison, the imidazole derivatives proved to be the most active compounds (1c vs. 1a, 1b, 1d, 1e), and in this

[†] Prepared by analogy with procedures reported in ref 17.

VOL. XL NO. 2

Penem (R ₂ =Na)	MIC (µg/ml)							
	S.a. 10B	S.a. 2999 i ⁺ p ⁺	S.p. Aronson	E.c. 205	E.c. 205 R ⁺ TEM	M.m. 2359	P.a. ATCC 12055	B.f. LO1
1a	0.5	1	0.2	2	4	4	>128	0.5
1b	0.5	1	0.1	2	2	4	128	0.1
1c	0.1	0.2	0.05	1	1	4	128	0.05
1d	0.1	0.2	0.01	1	8	8	>128	0.5
1e	0.2	0.5	0.1	2	2	8	128	0.2
1f	0.05	0.1	0.02	1	1	2	>128	0.05
1g	0.05	0.1	0.01	0.2	0.5	1	>64	0.2
1h	0.1	0.2	0.02	1	1	2	>128	0.1
1i	0.2	0.5	0.05	1	2	4	>64	0.1
2 b	0.1	0.1	0.05	1	1	2	64	0.1
2c	0.01	0.05	0.01	0.5	0.5	1	64	0.01
2d	0.05	0.05	0.01	4	4	2	>64	1
2h	0.05	0.05	0.02	1	1	2	>128	0.05

Table 1. In vitro antibacterial activity of various 2-(1-azolyl)penems 1 and 2.

Abbreviations: S.a.: Staphylococcus aureus, S.p.: Streptococcus pyogenes, E.c.: Escherichia coli, M.m.: Morganella morganii, P.a.: Pseudomonas aeruginosa, B.f.: Bacteroides fragilis.

series the 4,5-dimethylimidazolyl penem 1g exhibited the greatest antibacterial potency. As observed in other penem series^{8,9,17)}, exchange of the 6-hydroxymethyl for a 1'-*R*-hydroxyethyl group afforded a perceptible gain in activity, mainly against Gram-positive strains.

Finally, a high level of antibacterial potency against Gram-positive strains and anaerobes and lack of a significant activity against *Pseudomonas aeruginosa* were characteristic properties of the whole series.

Preliminary *in vivo* results indicated that penems 1 and 2 possess good therapeutic efficacy in the treatment of experimental infections in mice. For instance, ED_{50} values of 4.9 and 0.7 (cumulative dose; mg/kg) were determined following subcutaneous administration of 1c and 2c respectively to mice infected with *Staphylococcus aureus* 10B.

Acknowledgments

The authors express their thanks to Mrs. A. KRZAK, Mrs. J. GYSIN and especially Mr. W. BECK and Mr. B. STÄHELI for their excellent experimental work.

References

 WOODWARD, R. B.: Recent advances in the chemistry of β-lactam antibiotics. In Recent Advances in the Chemistry of β-Lactam Antibiotics. Spec. Publ. No. 28, Ed., J. ELKS, pp. 167~180, The Chemical Society Burlington House, London, 1977

- LANG, M.; K. PRASAD, J. GOSTELI & R. B. WOODWARD: The penems, a new class of βlactam antibiotics. 6. Synthesis of 2-alkylthiopenem carboxylic acids. Helv. Chim. Acta 63: 1093~1097, 1980
- OIDA, S.; A. YOSHIDA, T. HAYASHI, N. TAKEDA, T. NISHIMURA & E. OHKI: Synthesis of penems and their antibacterial activities. J. Antibiotics 33: 107~109, 1980
- ERNEST, I.: The penems. In Chemistry and Biology of β-Lactam Antibiotics. Nontraditional β-Lactam Antibiotics. Vol. 2, Eds., R. B. MORIN & M. GORMAN, pp. 315~360, Academic Press, New York, 1982
- 5) EMMER, G.; P. KNEUSSEL, J. HILDEBRANDT, F. TURNOWSKY, A. HASELBERGER, A. WENZEL & P. STÜTZ: Syntheses and biological activities of new penem derivatives with side chains derived from 4-hydroxyproline. J. Antibiotics 38: 1371~1386, 1985
- AFONSO, A.; A. K. GANGULY, V. GIRIJAVALLAB-HAN & S. MCCOMBIE: Synthesis of penem antibiotics. In Recent Advances in the Chemistry of β-Lactam Antibiotics. Spec. Publ. No. 52, Eds., A. G. BROWN & S. M. ROBERTS, pp. 266~ 279, The Chemical Society Burlington House, London, 1985
- COOKE, M. B.; K. W. MOORE, B. C. ROSS & S. E. TURNER: Synthesis and some antibacterial properties of 2-oxypenems. *In* Recent Advances in the Chemistry of β-Lactam Antibiotics. Spec. Publ. No. 52, *Eds.*, A. G. BROWN & S. M. ROBERTS, pp. 100~115, The Chemical Society

Burlington House, London, 1985

- LANG, M.; P. SCHNEIDER, W. TOSCH, R. SCARTAZZINI & O. ZAK: The penems, a new class of β-lactam antibiotics. 7. Synthesis and antimicrobial activity of 2-heterocyclylmercaptoalkyl derivatives. J. Antibiotics 39: 525~ 534, 1986
- 9) LANG, M.; P. SCHNEIDER, W. TOSCH, R. SCARTAZZINI & O. ZAK: Penems: a new class of β-lactam antibiotics. Synthesis and *in vitro* antimicrobial activity of 2-(N-azolyl)alkyl derivatives. Program and Abstracts of the 25th Intersci. Conf. on Antimicrob. Agents Chemother., No. 376, p. 159, Minneapolis, Sept. 29~Oct. 2, 1985
- OIDA, S.: Penems, synthetic approach to thienamycin analogues. In Recent Advances in the Chemistry of β-Lactam Antibiotics. Spec. Publ. No. 38, Ed., G. I. GREGORY, pp. 330~ 348, The Chemical Society Burlington House, London, 1981
- BEREMAN, R. D. & D. NALEWAJEK: Preparation and characterization of pyrrole-N-carbodithioate complexes of selected transition elements. Inorg. Chem. 16: 2687~2691, 1977
- TROFIMENKO, S.: 1-Pyrazole dithiocarboxylates. J. Org. Chem. 33: 890~892, 1968
- HEUSLER, K. & R. B. WOODWARD (Ciba-Geigy): Oxyessigsäureverbindungen. Ger. Offen. 1,935, 970, June 15, 1969
- 14) HEUSLER, K.: Total syntheses of penicillins and cephalosporins. *In* Cephalosporins and

Penicillins: Chemistry and Biology. Ed., E. H. FLYNN, p. 274, Academic Press, New York, 1972

- 15) SCARTAZZINI, R.; H. PETER, H. BICKEL, K. HEUSLER & R. B. WOODWARD: 41. Neue β-Laktam Antibiotika. Ueber die Darstellung der 7-Amino-cephalocillansäure. Helv. Chim. Acta 55: 408~417, 1972
- 16) LANG, M. (Ciba-Geigy): Heterocyclylthioverbindungen Verfahren zu Ihrer Herstellung, Pharmazeutische Präparate, Welche Diese Verbindungen Enthalten und Verwendung von Letzteren. Eur. Pat. Appl. 0,112,283, June 27, 1984
- 17) LARSEN, C.; K. STELIOU & D. N. HARPP: Thiocarbonyl transfer reagents. J. Org. Chem. 43: 337~338, 1978
- LANG, M. (Ciba-Geigy): Neue Aminoalkylpenem-Verbindungen. Eur. Pat. Appl. 0,171, 362, Feb. 12, 1986
- 19) GIRIJAVALLABHAN, V. M.; A. K. GANGULY, Y.-T. LIU, P. A. PINTO, N. PATEL, R. H. HARE & G. H. MILLER: A new class of penems.— C-2-N-substituted compounds—Synthesis and antibacterial activity. J. Antibiotics 39: 1187~ 1190, 1986
- 20) LANG, M. (Ciba-Geigy): Neue optisch aktive Penem Verbindungen. Eur. Pat. Appl. 0,148, 128, July 10, 1985
- 21) GIRUAVALLABHAN, V. M.; A. K. GANGULY, N. PATEL & Y.-T. LIU (Scherling Res.): 2-(*N*heterocyclyl)penems. Eur. Pat. Appl. 0,178,089, Apr. 16, 1986